CMP7032 -
Systems

Development
CWRKOO1 - Assessment Report

Assessment report for MSc Computing,
Post Graduate Systems Development
module.

$12763849

Table of Contents

TABLE OF FIGURESccuuuuiiiiiiiiiiiinnneieeiiiiitsanmsssssssssimsssnssssssssssssssssnsssssssssssssssnnssssssssssssssanssssssssssanes 3
FUNCTIONS OF PROGRAMcuuuiiiiiiiiiiitinnnnsieesiinessnnsssssssssisssssnnssssssssssssssnnsssssssssssssssnnsssssssssssssnnnes 4
READING FROM FILE USING STREAMREADERccettiiiiiitttitiettninrntnneaaaaaaaaaaeaseeaeaeaeeeeeererereeeeesenessnsnsnnnnnn 4
SEPARATING OUT DISTINCT LINES FROM DATA FILE 11euuvvteeeesurreeeesnnreeeessansseeessssnseeesssssseessssssssssessnssseeessssseees 4
STORING DATA READ IN ARRAYLIST .. .etttiiiieieieee s e s e e e e e e eeeeeeeeeeeeeeeeeeteteeebebebebeaa s aeseseseeeesaaaeaaeeneeeenenes 5
PASSING DATA TO METHODS ... vvteiuteeeitteestteesteeesssseessseassseesssseessssessssesssssessssssssssessnssssssssesssssesssssesansees 5
CALCULATIONS eiieieeeeeeeee et e e e eeeeeeeetet ettt etteeeebesesbab e s s s s e seeeeeaeaaaeaeeeeeeseseseeeaenesenensnnnsananaanan s sasaeaeens 6
Calculate the hours Of NOIrMAI PAYcoccueeeeeeeiiiie ettt set e e e et e e e ssaeaessssseeees 6
Calculate the hOUIS Of OVEItimME PAYccccueeeeeeeeiiiieeeeeiieeeeeeiaeeestte e e sstea e e sstaeaaesssseaesasasseeees 7
Calculate the DASIC PAY @AINEUeeeeeeeieiieeeiiee et ee sttt e st e e e st e e e s sata e e e sstaeaessssseeees 7
Calculate the OVertime Pay @AINEcccuueeeeeecuviieeeeeiiieeeeeieeeesctteesseteeeesstseaesssssaeeesassssenees 8
Calculate the Gross PAY EQINEMeueeeeuviieeeiiiiieeeeeieeeessitta e s sitta e e sstaa e s s siaeaasssisseaessssssenees 8
Calculate the amount of pay taxed at the RiGRer rAte...........cceuveeecvveeeeeiiiiieeesiiiieeesciiieesssiieen 9
Calculate the amount of pay taxed at the IOWEr FQte...........cccueeeeeecviieeeiiiiiieeesiiiiaeesiiieeesssireeens 9
(00] otV] o F 4= x 1o L= g e L (= e b OSSR 9

(00] [olV] o} {0 Mo) =T gl a1 [{2 e) OSSP RTR 10
Calculate the gross taxX PAYADIEeceeeueeeieeeeiiie et esctt et e s e e e s taa e e esteaaeesasees 10
Calculate the net pay for €ach @MPIOYEE...........ccc.uuevieeecuiiieeeeciieeeeeee e esea e eseaa e e 10
OUTPUT THE FINAL WAGES FOR EACH INDIVIDUAL INCLUDING, GROSS PAY, TAX PAYABLE AND NET PAY................ 10
SEPARATE OUT EACH INDIVIDUAL BASED ON THEIR DEPARTMENT (FROM DEPARTMENT CODE)....ceveevruvrereeennnnen. 11
OUTPUT THE REQUIRED FOLLOWING DATA TO SEPARATE AREAS ON THE SAME DISPLAY FOR THE FOLLOWING; 11
CALCULATE THE CUMULATIVE NET PAY FOR EACH DISCRETE DEPARTMENT ..eeevvreetreeeereeesereeesreeesssesssnesensneens 11
CALCULATE THE CUMULATIVE NET PAY AND TAX PAYABLE FOR THE COMPANY AS A WHOLE......uveeeieveeeireeeenennn 12
GET VARIABLES AND VALUES PRODUCED FROM METHODS TO OUTPUT RECORDS ...ccevvvererrrerrnrnrnnnnnnnnnnanaaseaeenss 12
CRITICAL ANALYSIS OF DATA STRUCTURES......cccttuuiiiiiitiieninnnnssiisstieeessnssssssssssssssnsssssssssssssssnnsssssns 13
A B ST RACT ettt et ettt et e e ettt e ettt ettt ettt et a e e e e seeeeeeaeeeeee et et et et ettt b e bt e bebe b e nann e e e e e e e e eeeeeeeeeeeeeeneeres 13
AIRRAYS ittt ettt eeeeeeeeeeeeeeeeee et et ettt e ettt et e e teba bt nana e e e e e e e eeeeeeeaeaeeeeeneeres 13
ST S ettt ettt ettt ettt ettt ettt e e e e e e e e e e eeeeeee et e et e e ettt t e b et thtebabaaaaa e e e e eeeeeeeeeeeeeeeeetet et et e aaraterenennnnan 14
LINKED LISTS «.etetttttttettrtnuntututi i eeaaaaeseeeeeeeeeaeeeaeaereaeeeaeaesasesensssasaaaa s e saaaeaaseeaeeeaeeeerereseseensesensnsnnnnnn 14
SELECTION AND JUSTIFICATIONcceeeeeiieiiriiiieennensssessnenmeesnssssssssssssmssnnsssssssssssssssnnsssssssssssssssnnsssssns 14
ANNOTATION OF COMPLETED PROGRAM.......ccciieiiniiniiieiieeiinicisisaiiessionsrassssssssisssssssssssssssssssansns 15
PROGRAIMLCS ...ttt e ettt ettt e e e ettt e s e e et ea b e e e et tebaa s e e e eee b e e e e eeaa s s e e e eeenaa s eeenaaranaeeeesennanes 15
DEP ARTIMENT.CS . tetttttuuieteeetttta e e e et ttra s e et ete e s e e e tae s s e e e e tanaa s e e e tae b e e e e esas s s eeeeeanaaeseeenaesanaeeaesennnnns 16
EIMIPLOYEE.CS . etettttttttttrtttnnttut e ea e s e e s e eeeeeeeeeeeeaaeereaeeteeaesestsbebsbasaa s e s aaaeeaeeeaeaeeeeeereseseseennesensnsnnnnnn 21
CRITICAL ANALYSIS OF TESTING APPROACHESucoiiiiiiiiirenniiiiinnineenennsssissesssssnsssssssssssssssnnsssssns 27
BLACK BOX TESTING tttttttruuuuuunuuuuuunaaaaaseseeaeeeeeeeeeesereeseseesesesssssssssnnnnnnanssssssasasssesseseeeeeeeerereseseeesesensssnnnnnn 27
WHITE BOX TESTING «.eeeiieieittiitittetittntiiaeeeaaaeseseeeeeeeeeaeaeeeeeaeereteesenenssssssnsssasaana s aasasasaeeasasasaeaeseneenes 27
WHITE BOX TESTING WITH TEST RESULTSciiiieeiiiiiiiiiiieenneeiiisiinneennsssssssssssssssnnsssssssssssssssnnssssnns 29
FLYEAZY PAYROLL PROGRAM TESTING c..uuuiietiittiieseeettnti e eeettniie s e eettenai s e s eesesnaaseeeeeennnaseeenaenanasseeesennnnns 29
TEOST DOT. .ottt ettt ettt e e e e ettt e e e e ettt s e s e eet e e e eeeantaaaeeaees 29

Test OULPUL FOr Preliminary TESt..... .. cieieeeeeeiieeeeitee e eeettta e ettt e e et e e e astaeassssseaasssssseaees 30

CMP7032 — Systems Development Page 1 of 48 $12763849

Single Line Data TeStS (WHAItE BOX)ccccuuueeeeeeiiiieeeeiiiieeeesiieaeesstieae e essvitaaaessuttaaeessstnaasssssneaesaans 31

TEOSE DAEA L. et e e e e e e e e e e e e e e e e ettt ettt e s e s e s e e e e e e eeeeaaaaaaaaaaeeneneraaaes 31
TEST QUEPULS FOI TEST Luunnnnneiiieeeieeee e e eeeeeeetttt et e e e e e ettt bttt e e e e e e e e e ss et aataaaaeeeeesssssssssssaaaaaeeens 32
TeSt TADIE fOr QI DOTA SEOLSvvveeeeiiieeeeeeiee et ett ettt e e et e e e st e e e e satteeesasasseaaessssseaees 39
TEOSE DATA 2.ttt et e e et e e e e e e e e e e e ettt ettt ettt e s e e e e e e e e e e e e e e e e e aaaaaaearenaaaaaas 39
Selected Test OULPULS fOr TESE DALA 2ccceeevvveeeeeeiiiieeeeciiieeeeeieee e essttaeeessuiteaeessttaaeesssssneaeeans 39
TESE DALA 3.ttt e e et e e e et e e e e et ettt ettt ettt e s e e e e e e e e e e e e e e e e e e aaaeaaeareaenaaaas 40
Selected Test OULPULS fOr TESE DALA 3ooeeeeueeieeeeciiiieeeeciteeeeeetieee e eestteeeessuiteaeessttaaaesssssneaeeaans 41
TEOSE DOEA 4ottt et e e et e e e et e et e e e e ettt ettt e e e s e s s e e e e e e e e e e e e e e aaaaaaaearanaraaaas 43
Selected Test OULPULS FOr TESE DALA 4oeeeeeeeeieeeeiiiieeeecieee e eeieee e essitae e e s suiteaeessitaaeesssstneaesans 43
TOST DOTA 5.ttt ettt e e ettt e e e e ettt s e e e e ettaae e s e e eeataeeeaees 44
Selected Test OULPULS fOr TESE DALA 5coovcvvveeeeeciiiiie et eeteee e ttee e st e e e ssitaae e ssvteeaeeans 44
TEOSE DATA 6.t e e e e e e e e e e e e e e e ettt e s e e e e e e e e e e e e e e e e e aaeaaaearenaaaaaas 46
Selected Test OULPULS fOr TESE DALA 6cceeeueeeeeeeeiiiieeeeciieeeeecieee e eestteaeessuiteaeesstteaeesssseeaesans 46
BIBLIOGRAPHY ...cuiiiiiiiiiiiiiniieiieiiieiieeiieeiieesiassisstsestesstasstassssssesssesstassssssssssssssssssassssssssssssssasssnsssnssans 48

CMP7032 — Systems Development Page 2 of 48 $12763849

Table of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:

Set of ten employees all formatted correctly using capital letters where necessary........... 29
Full, successful test result for ten employees from full test data file..........ccccovvvveeeeieeennnnn. 30
Single employee from the Sales department with codes in capital letters.cccvveeeeee.e. 31
Testing If/EISE@ STatE@MENT...ccci ittt e e e e e e e taa e e e e e eatbeeeeeennraeeeeas 32
Testing Entry into correct If Statementcuuviiiiiiii i e e e e 32
Testing Gross Pay Call......ueiiiiciiiiee ettt et e et e e e s e e e s staa e e e s sataeeesssnnraeeeean 33
Testing Correct Values in Calloeei oottt crrare e e e e e e e e e e e aannanes 34
Testing Correct Values in Calleeei oottt e e e e e e e e e e e aaaranes 35
Testing Correct Values Qut of Callooooiiiiiiiiiiee e e e e e e 36

Testing Correct Values QUL Of Callooeeieiiieciiieeeeeee e e e 36
Testing Correct Values from Call.........eie ittt e e e e e 37
Testing Correct Path to If/Else State@mMentcccuviiiieiiiiie e e 37
Testing Correct Decision into If/Else Statementcccoveiiiiiiieie e 38
Single employee from the Operations department with codes on capital letters. 39
Testing Correct Values QUL Of Callcceeieiiiiiiieeeee et e e e 39
Testing Correct Entrance into If/Else Statementcccoveiiiiiiiiii e 40
Testing Correct Values out of Call.........coooiiiiiiiiieeeec e 40
Single employee from the Marketing department with codes in capital letters................ 40
Testing Correct Entrance to If/Else Statementocoovviiiiiiiiiei e e 41
Testing Correct Values QUL of Callooeieeiiieiiiiieieeee e e e 41
Testing Correct Values QUL Of Calloceiiiiiieciiiiiiieeee et e e e 42
Single employee from the Sales department with codes in lower case.cccccceeeeeeeennnnnnns 43
Testing Correct Values QUL of Callcoeiieiiiiiiieeee et e e 43
Testing Correct Values QUL of Callcceieeiiieiiieeeee e 43
Single employee from the Marketing department with codes in lower case..................... 44
Testing Correct Values QUL Of Callcoeiieiiioiiiiiiiieeee et e e e 44
Testing Correct Entrance into If/Else Statementcccoveiiiiiiiiei e 44
Testing Correct Entrance to If/Else Statementooooeivieieiiiiiiei et 45
Single employee from the Operations department with codes in lower case. 46
Testing Correct Values QUL Of Callcoeiieiiiiieeeeee et e e 46
Testing Correct Value Out of Call........ooeiiiiiccieieeec e e e 47

CMP7032 — Systems Development Page 3 of 48 $12763849

Functions of Program

Reading from File using StreamReader

The first process the program carries out is to open a stream reader and read the identified text file.
It does this with the use of a while loop, and while there are readable lines of data within the file it
reads them, once there are no further lines of readable data in the file it stops reading the
designated file and via the tr.Close command closes the stream.

If there are any reasons why the file cannot be read, such as an incorrect file name or location the
try look will catch this and output an exception message, stating that an exception has been caught.

public void readEmployeeDataFile (string fileName)
{

string line;

int lineCount = 0;

try
{
// Create a reader and open the file
TextReader tr = new StreamReader (fileName) ;
while ((line = tr.ReadLine()) != null)
{
lineCount = lineCount + 1;
// separates out the required parts of the data file
string id = line.Substring (0, 4);
string surname = line.Substring(4, 20);
string forename = line.Substring (24, 20);
string deptCode = line.Substring (44, 1);
string grade = line.Substring (45, 1);
string hoursWorked = line.Substring (47, 2);

// passes data for each separated out individual into
Array List

Employee newEmployee = new Employee (id, surname,
forename, deptCode, grade, Convert.ToDouble (hoursWorked)) ;

Employee.Add (newEmployee) ;

}

// Close the Stream

tr.Close();
}
// Exception in case there are problems reading the file name
catch (Exception e)

{
Console.Writeline ("Exception Caught While Reading File");
Console.Writeline (e.Message) ;

Separating out distinct lines from data file

Whilst being read by the stream reader, the program uses the substring command to separate out
each like of data into its composite parts. These are defined by the starting position within each line
and the amount of characters in this section; i.e. (0, 4) means starting at the O character in the line

CMP7032 — Systems Development Page 4 of 48 512763849

with a character length of 4 characters, or (44, 1) means starting at the 44™ character in the line with

a character length of 1 character, and so on.

// separates out the required parts of the data file
string id = line.Substring (0, 4);
string surname = line.Substring (4, 20);
string forename = line.Substring (24, 20);
string deptCode = line.Substring (44, 1);
string grade = line.Substring (45, 1);
string hoursWorked = line.Substring (47, 2);

Storing Data Read in ArrayList
The data read from the designated file is then stored in an Array List, for future use by the methods

within the program. It is stored as a new Employee within the Array of this name

// passes data for each separated out individual into Array List
Employee newEmployee = new Employee (id, surname,

forename, deptCode, grade, Convert.ToDouble (hoursWorked)) ;
Employee.Add (newEmployee) ;

AND

// The array to store employee deatails
private ArrayList Employee = new ArrayList();

Passing Data to methods

Once the required data is stored in the Array List, it is then called into the Employee class, where it is
actioned upon as detailed later via various calculations methods. However in order for this to be
possible, it needs to be turned into class member variables. The program does this by means of a
constructor which takes the variables read by the stream reader and stored in the Array List and

instigated new class member variables.

/==
// Variables read from file
/==
string id;
string surname;
string forename;
string deptCode;
string grade;
double hoursWorked;
/==
// Default Constructor
/==
public Employee ()
{
id ="";
surname = "";
forename = "";
deptCode = "";
grade = "";
hoursWorked = 0;
}
/==

// Normal Constructor

CMP7032 — Systems Development Page 5 of 48 512763849

public Employee(string id, string surname, string forename, string
deptCode, string grade, double hoursWorked)
{
// Loading Parameters to match class memeber variables
this.id = id;
this.surname = surname;
this.forename = forename;
this.deptCode = deptCode;
this.grade = grade;
this.hoursWorked = Convert.ToDouble (hoursWorked) ;

Calculations

The class member variables once created can be used in the following methods to perform the
calculations, some returning integer results and others returning new variables which are be used in
further calculations to produce outputs. Please note, all methods that return accounting values, i.e.
doubles, use the Ma th.Round calculation within them to return the value to two decimal places
only.

Calculate the hours of normal pay

Firstly by using an if/else statement, the program has a method that will calculate the hours worked
that can be classed as ‘normal hours’ which will be used to calculate the amount of pay that is paid
at the normal basic pay rate. It also uses the Math.Min command to calculate this based on a
minimum required working hours.

public double calcNormalHours ()

{ if (grade == "A" || grade == "a")
{ return Math.Min (hoursWorked, 45);
;lse if (grade == "B" || grade == "b")
{ return Math.Min (hoursWorked, 45);
;lse if (grade == "C" || grade == "c")
{ return Math.Min (hoursWorked, 40);
;lse if (grade == "D" || grade == "d")
{ return Math.Min (hoursWorked, 40);
;lse if (grade == "E" || grade == "e")
{ return Math.Min (hoursWorked, 37);
}

else

{

return 0;

}

CMP7032 — Systems Development Page 6 of 48 512763849

Calculate the hours of overtime pay

The program will then use a similar combination of if/else statements and the Math.Max command

to calculate the hours worked that are over the required basic rate hours. This method will then

return the amount of hours worked that are payable at the overtime pay rate.

public double calcOvertimeHours ()

{

if (grade == "A" || grade == "a")

{ return Math.Max (hoursWorked - 45, 0);
;lse if (grade == "B" || grade == "b")

{ return Math.Max (hoursWorked - 45, 0);
;lse if (grade == "C" || grade == "c")

{ return Math.Max (hoursWorked - 40, 0);
;lse if (grade == "D" || grade == "d")

{ return Math.Max (hoursWorked - 40, 0);
;lse if (grade == "E" || grade == "e")

{ return Math.Max (hoursWorked - 37, 0);

}

else

{

return 0;

}

Calculate the basic pay earned

The program will then take the hours returned by the previous method as normal rate hours, to

calculate the basic pay of each employee. Again this method uses it/else statements to differentiate

the pay rates based on the grade of each employee that has been passed to it in the class member

variables.

public double calcBasicPay ()

{

if (grade == "A" || grade == "a")

{ return Math.Round(calcNormalHours() * 3.00, 2);
;lse if (grade == "B" || grade == "b")

{ return Math.Round(calcNormalHours() * 3.50, 2);
;lse if (grade == "C" || grade == "c")

{ return Math.Round(calcNormalHours() * 4.00, 2);
;lse if (grade == "D" || grade == "d")

CMP7032 — Systems Development Page 7 of 48

512763849

{

return Math.Round(calcNormalHours () * 4.00, 2);
}
else if (grade == "E" || grade == "e")
{

return Math.Round(calcNormalHours () * 4.50, 2);
}
else

{

return 0;

}

Calculate the overtime pay earned

This method again is nearly identical to that to work out the basic pay amounts by using a series of

if/else statements and the values passed to it from the previous overtime hours’ method.

public double calcOvertimePay ()

{

if (grade == "A" || grade == "a")
{

return Math.Round(calcOvertimeHours ()

}
else if (grade == "B" || grade == "b")

{

return Math.Round(calcOvertimeHours ()
}
else if (grade == "C" || grade == "c")
{

return Math.Round(calcOvertimeHours ()
;lse if (grade == "D" || grade == "d")
{ return Math.Round(calcOvertimeHours ()
;lse if (grade == "E" || grade == "e")
{

return Math.Round(calcOvertimeHours ()

}

else

{

return 0;

}

Calculate the Gross Pay Earned

.10,

.25,

.25,

.50,

.50,

The program then uses a method to calculate the gross pay for each employee based on the values

passed through to it from the previous methods.

public double calcGrossPay ()

{

}

return Math.Round(calcBasicPay() - calcOvertimePay (),

CMP7032 — Systems Development Page 8 of 48

2);

512763849

Calculate the amount of pay taxed at the higher rate

Once the gross pay is calculated a new method takes the value returned to work out the amount of
this gross pay that is taxable at the higher rate. It does this via another if else statement, asking if the
gross pay is above £100 and then returning a value to state how much of the gross pay can be taxed
at the higher rate. Note this does not return a value, merely a new variable that can be then passed
to a further method to calculate the accounting value itself.

public double taxableHigherRate ()
{
if (calcGrossPay() > 100)
{
return Math.Round(calcGrossPay() - 100, 2);
}
else
{
return 0;

}

Calculate the amount of pay taxed at the lower rate
Similarly the taxable amount variable for the lower rate of tax is created through this method and a
series of if/else statements.

public double taxableLowerRate ()
{
if (calcGrossPay() > 100)
{
return 80;
}
else if (calcGrossPay() <= 100)
{
return Math.Round(calcGrossPay() - 20, 2);
}
else
{
return 0;

}

Calculate Higher Rate Tax
Once the variable for the tax payable at the higher rate is returned, this method calculates the actual
accounting value for each employee’s higher rate of tax; where applicable.

public double higherRateTax ()
{

return Math.Round(taxableHigherRate() * 0.15, 2);
}

CMP7032 — Systems Development Page 9 of 48 512763849

Calculate Lower Rate Tax
Similarly from the variable derived for the amount of lower rate tax to be paid, this method then
returns the accounting value for each employee’s lower rate of tax to be paid.

public double lowerRateTax ()

{
return Math.Round(taxableLowerRate() * 0.1, 2);

}

Calculate the gross tax payable
From the two values produces in the above two methods, this method in the program then
calculates the actual amount of gross tax to be paid.

public double calcGrossTaxPayable ()

{
return Math.Round(higherRateTax () + lowerRateTax (), 2);

}

Calculate the net pay for each employee

The program then follows on from the calculation method to calculate gross pay, and along with the
method that produces tax payable. This method within the program then calculates the net pay for
each employee by a simple subtraction calculation.

public double calcNetPay ()
{

return Math.Round(calcGrossPay() - calcGrossTaxPayable(), 2);

}

Output the final wages for each individual including, gross pay, tax payable

and net pay

Returning to the Department class within the program, there are a series of methods which get
information from the calculations performed within the employee class, to return values for each
employee and department, before they are passed to the Program class to be output to the screen.

As shown below, in the Marketing example, there is a method to produce the final wages for each
department. This method returns values to the variable that is then called from the Program class. It
does this with the use of a for loop. The program will step through each record in the Array List of
variables that have been passed to the Employee methods earlier. The program class method then

calls the results for the calculations, to return all of the required fields for the report.

public string showEmployeePayMarketing ()
{

string id = "";
string surname = "";
string forename = "";
string deptCode = "";
string grade = "";

CMP7032 — Systems Development Page 10 of 48 512763849

double hoursWorked = 0;
double grossPay = 0.
double taxPayable =
double netPay = 0.0;

0;
0.0;

// step through each employee

for (int 1 = 0; 1 < Employee.Count; i++)

{
Employee nextEmployee = (Employee)Employee[il];
id = nextEmployee.returnId();
surname = nextEmployee.returnSurname () ;
forename = nextEmployee.returnForename () ;
deptCode nextEmployee.returnDept () ;
grade = nextEmployee.returnGrade () ;
hoursWorked = nextEmployee.returnHoursWorked() ;
grossPay = nextEmployee.calcGrossPay();
netPay = nextEmployee.calcNetPay();
taxPayable = nextEmployee.calcGrossTaxPayable () ;

Separate out each individual based on their department (from Department
Code)

These methods then use an if/else statement to isolate each record based on its department code.

// Write the outputs to screen
if (deptCode == "M" || deptCode == "m")
{
Console.WriteLine (id + "\t" + surname + "\t" + forename
+ "\t" + grade + "\t" 4+ hoursWorked + "\t" + grossPay + "\t" + taxPayable +
"\t" + netPay);

Output the required following data to separate areas on the same display

for the following;
These above methods then produce the values required, i.e. ID, Surname, Forename, Grade, Hours
Worked, Gross Pay, Tax Payable and Net Pay. This can be seen above.

Calculate the cumulative Net Pay for each discrete department
The next method in the Department Class then uses a for loop to loop through all employees in the
Array List to output a departmental total for each employee with an if/else statement used to isolate

each employee dependant on their department code.

public void showMarketingTotal ()
{
double marketingNetPay = 0.0;
string deptCode = "";

// step through each employee
for (int 1 = 0; 1 < Employee.Count; i++)
{
// get the next employee
Employee nextEmployee = (Employee)Employee[i];

// find the department code value

deptCode = nextEmployee.returnDept () ;

// add the next net pay item to the departmental total (for
each matching variable)

if (deptCode == "M" || deptCode == "m")

CMP7032 — Systems Development Page 11 of 48 $12763849

{
marketingNetPay = marketingNetPay +
nextEmployee.calcNetPay () ;
}
}

// write the total net pay and tax payable for the department
Console.WriteLine ("\t"™ + "\t"™ + "\t"™ + "\t" + "\t" + "\t" +
N o N T T S e S et bt ")
Console.WriteLine ("Total for: Marketing"™ + "\t" + "\t" + "\t" +
TAET A UNET A+ UAET 4+ MAET 4+ U\E" 4+ "\t" 4+ " £" + marketingNetPay);
Console.WriteLine () ;

Calculate the cumulative Net Pay and Tax Payable for the company as a

whole.
The final method in this class then calculates the total net pay for the whole company, again with
the use of a for loop to loop through all of the employee details stored in the array list.

public void showTotalPay ()
{
double taxPayable 0.0;

double netPay = 0.0;

// step through each employee
for (int 1 = 0; 1 < Employee.Count; i++)
{
// get the next employee
Employee nextEmployee = (Employee)Employee[il];
// add the next net pay item to the departmental total (for
each variable)
netPay = netPay + nextEmployee.calcNetPay () ;
taxPayable = taxPayable +
nextEmployee.calcGrossTaxPayable () ;

}
// write the total net pay and tax payable for the company

Console.WriteLine ("Total Net Pay:" + "\t" + "\t" + "£" +
netPay) ;

Console.WriteLine ("Total Tax Payable:" + "\t" + "£" +
taxPayable) ;

Console.WriteLine () ;

}

Get Variables and Values produced from methods to output records

Finally the Program Class gets all of the variables required to produce the required output. It does
this with a series of calls from the other methods to produce the outputs. This can be seen in the full
annotated program, shown later.

CMP7032 — Systems Development Page 12 of 48 $12763849

Critical Analysis of Data Structures

Abstract

The C# programming language uses a vast library of data structures in order to make a program
complete and valid. These range from Arrays, ArrayLists and various collection classes to Stacks and
Queues. For the purpose of this piece we will focus on three of these data structures, namely; Arrays
and Arraylists and Lists and LinkedLists.

Arrays

An Array as described by McMillan (2007) is “a collection of elements with the same data type.”
Arrays and other data structures are used when the program requires multiple related values that
cannot be simply stored as variables. Arrays can be either static or dynamic. We use arrays to store
data that we wish to refer to or call from at a later date (or point) within a program’s running thus
overcoming the problems that arise when using separate variables. The English computer science
definition of an Array being; “An arrangement of memory elements in one or more planes.”
(Unsupported source type (InternetSite) for source Farl2.)

Arrays can be simple one dimensional or two dimensional instances or much more complex three
dimensional instances. Each item within an Array is accessed using a number, or index. This points
the program to the specific cell within an Array where the data it required is located and stored as
shown below.

Index

!
o
[
N
w

Value

!

Name Year Month Day

Arrays can be used easily within a programs creations, but do have their limitations. A static Array is
fixed in length and therefore the size canot change during the running of a program after creation.
This will cause problems in programs such as the Payroll Program for any business where employee
numbers can change rapidly and over time. Arrays also cannot perform operations themselves and
operations cannot be performed on the entirety of the Array, therefore loops are often needed.

To this end other data strcutures can be used, such as the ArrayList. While an ArraylList itself also has
spme limiations; some of those associated with Arrays, an ArrayList is a dynamic form of Array, or as
has been described, “a non generic collection that behaves like an array on steroids (Miller 2012).

An Array List, is a dynamic Array, which is hugely useful when the size of the array required is not
known in the first place. As an array will not be able to resize itself when it runs out of size, by
definition an ArrayList will be able to perform this task. When Array lists are first initialised they set a
default property perameter as 16. However if this size perameter is met then they will automatically
add a further 16 elements to their storage space, thus overcoming the problem of statically sized
arrays.

CMP7032 — Systems Development Page 13 of 48 512763849

Lists

A list is an alternative to an array. Whilst using a List is very similar to an Array the significant
difference between an Array and a List is that a List doe not have a specific number of elements that
can be stored inside it. Lists can grow and shrink automatically when values are added or removed.
As Miller (2012) states, Lists provide a wide assortment of methods that let you manipulate them in
many ways. Lists do still use indexes in the same way as an Array to access the data stored within it
but are limited only to the amount of free memory available when running the program.

Linked Lists

A Linked list is a collection of objects called nodes (Mc Millan 2007). Each of these nodes is linked to
its successor node using a reference or link. The benefits of Linked Lists are that adding or removing
items within the list’s internal structure is very easy to implement, thus making them much more
flexible that both Arrays (including ArrayLists) and Lists. However as Mc Millan, (2007) goes on to say
there are still problems associated with Linked Lists, most notably that the program cannot refer to
two positions within the Linked List at the same time. When this problem is encountered, further
code lines are required as an interator class will need to be created and uitilised.

Selection and Justification

While a List or Linked list could be seen from the analysis above to be suitable data structures to use
for the Fly Eazy Payroll program due to the number of employees not being known at the start of the
program, it is seen that a Static Array will not be suitable.

Furthermore due to the amount of free memory available not being known it can be assumed that a
List itself would equally not be a suitable data structure.

So in conclusion as the Fly Eazy Payroll Program requires the flexibility of a List, with the employee
count being an unknown variable, but the relative simplicity of an Array an ArrayList would be the

most appropriate data structure to use in its creation.

To this end an ArrayList will be used as the primary data structure used in the Fly Eazy Payroll
Program.

CMP7032 — Systems Development Page 14 of 48 $12763849

Annotation of completed program

Program.cs
using System
using System
using System
using System
using System

.Collections.Generic;
.Ling;

.Text;

.I0;

namespace FlyEazyRWFinal

{

class Pr

{
stat

{

Systems
Development\Assessment\FlyEazyV2\FlyEazyV2\bin\Debug\EmployeeData.txt") ;

+
+

+
+

+
+

"Forename"
"Tax" + u\

"Forename"
"Tax" + u\

"Forename"
"Tax" + u\

ogram
ic void Main(string[] args)

Department record = new Department();
// "G:\~ " Will need altering for different file locations
record.readEmployeeDataFile (@"G:\University\MSc\CMP7032 -

// Main Header with line return afterwards
Console.WritelLine ("FlyEazy Flytes Payroll Report");
Console.WriteLine () ;

// Header for Marketing

Console.WritelLine ("Department: Marketing");

// Sub Header

Console.WriteLine ("ID" + "\t" + "Surname" + "\t" + "\t" + "\t"
+ "\t" 4+ "\t" + "Grade" + "\t" + "Hrs" + "\t" + "Gross" + "\t"
t" + "Net Pay");

// Show records of Employee pay
record.showEmployeePayMarketing () ;

record.showMarketingTotal () ;

Console.WriteLine () ;

// Header for Sales

Console.WritelLine ("Department: Sales");

// Sub Header

Console.WriteLine ("ID" + "\t" + "Surname" + "\t" + "\t" + "\t"
+ "\t" 4+ "\t" + "Grade" + "\t" + "Hrs" + "\t" + "Gross" + "\t"
t" + "Net Pay");

// Show records of Employee pay

record.showEmployeePaySales () ;

record.showSalesTotal () ;

Console.WriteLine () ;

// Header for Operations

Console.WritelLine ("Department: Operations");

// Sub Header

Console.WriteLine ("ID" + "\t" + "Surname"™ + "\t" + "\t" + "\t"
+ "\t" 4+ "\t" + "Grade" + "\t" + "Hrs" + "\t" + "Gross" + "\t"
t" + "Net Pay");

// Show records of Employee pay
record.showEmployeePayOperations () ;
record.showOperationsTotal () ;

Console.WriteLine () ;

// Header for Whole Company Totals

CMP7032 — Systems Development Page 15 of 48 $12763849

Console.WritelLine ("Totals for whole company");
Console.WriteLine () ;

// Show records for whole company
record.showTotalPay () ;

Department.cs

using System;

using System.Collections;
using System.IO;

namespace FlyEazyRWFinal
{
public class Department

{
// The array to store employee deatails
private ArrayList Employee = new ArrayList();

public void readEmployeeDataFile (string fileName)
{

string line;
int lineCount = 0;

try
{

// Create a reader and open the file

TextReader tr = new StreamReader (fileName) ;

while ((line = tr.ReadLine()) != null)
{

lineCount = lineCount + 1;

// separates out the required parts of the data file

string id = line.Substring(0, 4);

string surname = line.Substring(4, 20);
string forename = line.Substring (24, 20);
1);

string deptCode = line.Substring (44,
string grade = line.Substring (45, 1);

string hoursWorked = line.Substring (47,

// passes data for each separated out individual into

Array List

Employee newEmployee = new Employee (id,
forename, deptCode, grade, Convert.ToDouble (hoursWorked)) ;

Employee.Add (newEmployee) ;
}

// Close the Stream
tr.Close();
}

// Exception in case there are problems reading the file name

catch (Exception e)

{

Console.Writeline ("Exception Caught While Reading File");

CMP7032 — Systems Development Page 16 of 48

512763849

Console.Writeline (e.Message) ;

public void showTotalPay ()

{
double taxPayable = 0.0;
double netPay = 0.0;

// step through each employee
for (int 1 = 0; 1 < Employee.Count; i++)
{
// get the next employee
Employee nextEmployee = (Employee)Employee[i];

// add the next net pay item to the departmental

each variable)
netPay = netPay + nextEmployee.calcNetPay () ;
taxPayable = taxPayable +
nextEmployee.calcGrossTaxPayable () ;

}

total (for

// write the total net pay and tax payable for the company

Console.WriteLine ("Total Net Pay:" + "\t" + "\t" + "£" +

netPay) ;

Console.WriteLine ("Total Tax Payable:" + "\t" + "£" +

taxPayable) ;
Console.WriteLine () ;

/==
// Wages Method To calculate each individual's full wages breakdown for
Marketing
/==
public string showEmployeePayMarketing ()
{
string id = "";
string surname = "";
string forename = "";
string deptCode = "";
string grade = "";

double hoursWorked = 0;
double grossPay = 0.
double taxPayable =
double netPay = 0.0;

0;
0.0;

// step through each employee
for (int 1 = 0; 1 < Employee.Count; i++)
{

Employee nextEmployee = (Employee)Employee[i];
id = nextEmployee.returnId();

surname = nextEmployee.returnSurname () ;
forename = nextEmployee.returnForename () ;

deptCode = nextEmployee.returnDept () ;
grade = nextEmployee.returnGrade () ;
hoursWorked = nextEmployee.returnHoursWorked() ;

CMP7032 — Systems Development Page 17 of 48

512763849

grossPay = nextEmployee.calcGrossPay();
netPay = nextEmployee.calcNetPay();
taxPayable = nextEmployee.calcGrossTaxPayable () ;

// Write the outputs to screen
if (deptCode == "M" || deptCode == "m")
{
Console.WriteLine (id + "\t" + surname + "\t" + forename
+ "\t" + grade + "\t" + hoursWorked + "\t" + grossPay + "\t" + taxPayable +
"\t" + netPay);
}
}
// No return as not all code paths return a value
return Convert.ToString(0);

// Wages Method To calculate each individual's full wages breakdown for
Sales

e
public string showEmployeePaySales ()
{
string id = "";
string surname = "";
string forename = "";
string deptCode = "";
string grade = "";

double hoursWorked = 0;
double grossPay = 0.0;
double taxPayable = 0.0;
double netPay = 0.0;

// step through each employee
for (int 1 = 0; 1 < Employee.Count; i++)
{

Employee nextEmployee = (Employee)Employee[i];
id = nextEmployee.returnId();

surname = nextEmployee.returnSurname () ;
forename = nextEmployee.returnForename () ;
deptCode = nextEmployee.returnDept () ;

hoursWorked = nextEmployee.returnHoursWorked() ;
grade = nextEmployee.returnGrade () ;

grossPay = nextEmployee.calcGrossPay();

netPay = nextEmployee.calcNetPay();

taxPayable = nextEmployee.calcGrossTaxPayable () ;

// Write the outputs to screen
if (deptCode == "S" || deptCode == "s")
{
Console.WriteLine (id + "\t" + surname + "\t" + forename
+ "\t" + grade + "\t" + hoursWorked + "\t" + grossPay + "\t" + taxPayable +
"\t" + netPay);

}

// No return as not all code paths return a value
return Convert.ToString(0);

CMP7032 — Systems Development Page 18 of 48 512763849

// Wages Method To calculate each individual's full wages breakdown for

Operations

public string showEmployeePayOperations ()

{

+ "\t" + grade +
"\t" + netPay);

string id = "";
string surname = "";
string forename = "";
string deptCode = "";
string grade = "";

double hoursWorked = 0;

double grossPay = 0.0;
double taxPayable = 0

.0;

double netPay = 0.0;

// step through each employee

for

{

}

(int 1 = 0; i < Employee.Count; i++)

Employee nextEmployee = (Employee)Employee[il];
id = nextEmployee.returnId();

surname = nextEmployee.returnSurname () ;
forename = nextEmployee.returnForename () ;
deptCode nextEmployee.returnDept () ;

grade = nextEmployee.returnGrade () ;

hoursWorked = nextEmployee.returnHoursWorked() ;
grossPay = nextEmployee.calcGrossPay();

netPay = nextEmployee.calcNetPay();

taxPayable = nextEmployee.calcGrossTaxPayable () ;

// Write the outputs to screen
if (deptCode == "O" || deptCode == "o")
{

Console.WriteLine (id + "\t" + surname + "\t"

+ forename

"\t" + hoursWorked + "\t" + grossPay + "\t" + taxPayable +

// No return as not all code paths return a value
return Convert.ToString(0);

CMP7032 — Systems Development

public void showMarketingTotal ()
{
double marketingNetPay = 0.0;
string deptCode = "";

// step through each employee
for (int 1 = 0; i < Employee.Count;

{

it++)

// get the next employee
Employee nextEmployee =

// find the department code value
deptCode = nextEmployee.returnDept () ;

// add the next net pay item to the departmental total
each matching variable)

Page 19 of 48

(Employee)Employee[i];

(for

512763849

if (deptCode == "M" || deptCode == "m")
{
marketingNetPay = marketingNetPay +

nextEmployee.calcNetPay () ;

£+ e

£+ e
)

Y

}
}

// write the total net pay and tax payable for the department
Console.WriteLine ("\t" + "\t" + "\t" + "\t" + "\t" + "\t" +
N o T T ")

Console.WriteLine ("Total for: Marketing"™ + "\t" + "\t" + "\t" +
+ONE" 4+ "\ET + "\E" 4+ "\t" 4+ " £" + marketingNetPay);
Console.WriteLine () ;

public void showSalesTotal ()

{

double salesNetPay = 0.0;
string deptCode = "";

// step through each employee
for (int 1 = 0; 1 < Employee.Count; i++)
{
// get the next employee
Employee nextEmployee = (Employee)Employee[i];

// find the department code value
deptCode = nextEmployee.returnDept () ;
// add the next net pay item to the departmental total (for

each matching variable)

£+ e

£+ e
)

Y

if (deptCode == "S" || deptCode == "s")
{
salesNetPay = salesNetPay + nextEmployee.calcNetPay() ;

}

// write the total net pay and tax payable for the department
Console.WriteLine ("\t"™ + "\t"™ + "\t"™ + "\t" + "\t" + "\t" +

R s T T ")

Console.WriteLine ("Total for: Sales" + "\t"™ + "\t" + "\t" +

+ "\E" 4+ "NET 4+ "\ET 4+ "\t" 4+ " £" + salesNetPay);
Console.WriteLine () ;

public void showOperationsTotal ()

{

double operationsNetPay = 0.0;
string deptCode = "";

// step through each employee
for (int 1 = 0; 1 < Employee.Count; i++)
{
// get the next employee
Employee nextEmployee = (Employee)Employee[i];

CMP7032 — Systems Development Page 20 of 48 $12763849

// find the department code value

deptCode = nextEmployee.returnDept () ;

// add the next net pay item to the departmental total (for
each matching variable)

if (deptCode == "O" || deptCode == "o")

{

operationsNetPay = operationsNetPay +

nextEmployee.calcNetPay () ;

}

}

// write the total net pay and tax payable for the department
Console.WriteLine ("\t" + "\t" + "\t" + "\t" + "\t" + "\t" +
N o N T T S e S et bt ")
Console.WriteLine ("Total for: Operations" + "\t" + "\t" + "\t"
+O"\NET A TNET 4 UNET 4+ UANET 4+ "\ET 4+ "\t + " £" 4+ operationsNetPay) ;
Console.WriteLine () ;

}

Employee.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.IO;

namespace FlyEazyRWFinal
{

public class Employee

/) m e
// Variables read from file
/==
string id;
string surname;
string forename;
string deptCode;
string grade;
double hoursWorked;
/==
// Default Constructor
/==
public Employee ()
{
id = "";
surname = "";
forename = "";
deptCode = "";
grade = "";

hoursWorked = 0;

CMP7032 — Systems Development Page 21 of 48 $12763849

public Employee(string id, string surname, string forename,
deptCode, string grade, double hoursWorked)
{
// Loading Parameters to match class memeber variables
this.id = id;
this.surname = surname;
this.forename = forename;
this.deptCode = deptCode;
this.grade = grade;
this.hoursWorked = Convert.ToDouble (hoursWorked) ;

B e
// Method to return Employee ID
/==
public string returnId()
{
return id;
}
B e
// Method to return Surname
/==
public string returnSurname ()
{
return surname;
}
B e
// Method to return Forename
/==
public string returnForename ()
{
return forename;
}
B e
// Method to return Grade
B
public string returnGrade ()
{
return grade;
}
B e
// Method to return Department
/==
public string returnDept ()
{
return deptCode;
}
B e

public double returnHoursWorked()

CMP7032 — Systems Development Page 22 of 48

string

512763849

return hoursWorked;

/==
// Method to return normal hours
/==
public double calcNormalHours ()
{
if (grade == "A" || grade == "a")
{
return Math.Min (hoursWorked, 45);
}
else if (grade == "B" || grade == "b")
{
return Math.Min (hoursWorked, 45);
}
else if (grade == "C" || grade == "c")
{
return Math.Min (hoursWorked, 40);
}
else if (grade == "D" || grade == "d")
{
return Math.Min (hoursWorked, 40);
}
else if (grade == "E" || grade == "e")
{
return Math.Min (hoursWorked, 37);
}
else
{
return 0;
}
}
/==
// Method to return Overtime Hours
/==
public double calcOvertimeHours ()
{
if (grade == "A" || grade == "a")
{
return Math.Max (hoursWorked - 45, 0);
}
else if (grade == "B" || grade == "b")
{
return Math.Max (hoursWorked - 45, 0);
}
else if (grade == "C" || grade == "c")
{
return Math.Max (hoursWorked - 40, 0);
}
else if (grade == "D" || grade == "d")
{
return Math.Max (hoursWorked - 40, 0);
}
else if (grade == "E" || grade == "e")
{
return Math.Max (hoursWorked - 37, 0);

CMP7032 — Systems Development Page 23 of 48

512763849

}

else

{

return 0;

public double calcBasicPay ()

{

if (grade == "A" || grade == "a")

{ return Math.Round(calcNormalHours () *
;lse if (grade == "B" || grade == "b")

{ return Math.Round(calcNormalHours () *
;lse if (grade == "C" || grade == "c")

{ return Math.Round(calcNormalHours () *
;lse if (grade == "D" || grade == "d")

{ return Math.Round(calcNormalHours () *
;lse if (grade == "E" || grade == "e")

{ return Math.Round(calcNormalHours () *
}

else

{

return 0;

.00, 2);

.50, 2);

.00, 2);

.00, 2);

.50, 2);

public double calcOvertimePay ()

{

if (grade == "A" || grade == "a")
{
return Math.Round(calcOvertimeHours ()
}
else if (grade == "B" || grade == "b")
{

return Math.Round(calcOvertimeHours ()

}
else if (grade == "C" || grade == "c")
{

return Math.Round(calcOvertimeHours ()

}
else if (grade == "D" || grade == "d")

{

return Math.Round(calcOvertimeHours ()

}

CMP7032 — Systems Development Page 24 of 48

512763849

else if (grade == "E" || grade == "e")
{
return Math.Round(calcOvertimeHours () * 1.50, 2);
}
else
{

return 0;

}
}
/) m e
// Method to Gross Pay
/) m e
public double calcGrossPay ()
{
return Math.Round(calcBasicPay() - calcOvertimePay (), 2);
}
/) m e
// Method to return Ammount taxable at Higher Rate
/) m e
public double taxableHigherRate ()
{
if (calcGrossPay() > 100)
{
return Math.Round(calcGrossPay() - 100, 2);
}
else
{
return 0;
}
}
/) m e
// Method to return Ammount taxable at Lower Rate
/) m e

public double taxableLowerRate ()
{
if (calcGrossPay() > 100)
{
return 80;

}

else if (calcGrossPay() <= 100)
{

return Math.Round(calcGrossPay() - 20, 2);
}
else
{
return 0;
}
}
/==
// Method to return Higher Rate Tax
/==

public double higherRateTax ()

CMP7032 — Systems Development Page 25 of 48 $12763849

return Math.Round(taxableHigherRate () * 0.15, 2);

/==
// Method to return Lower Rate Tax
/==
public double lowerRateTax ()
{
return Math.Round (taxableLowerRate () * 0.1, 2);
}
/==
// Method to return Gross Tax Payable
/==
public double calcGrossTaxPayable ()
{
return Math.Round(higherRateTax () + lowerRateTax (), 2);
}
/==
// Method to return Net Pay
B et

public double calcNetPay ()
{

return Math.Round(calcGrossPay() - calcGrossTaxPayable(), 2);

CMP7032 — Systems Development Page 26 of 48 $12763849

Critical analysis of testing approaches

According to the IEEE, “Software testing is the process of analysing a software item to detect the
differences between existing and required conditions (that is bugs) and to evaluate the features of
the software item.” The purpose of testing is to find out if the program is both working correctly,
both at compile time and run time, and producing both the correct outputs and the required
outputs. The IEEE also describes testing as one of verification and validation software practices.

Boehm (1981) describes verification and validation as such:

“Through verification we make sure the product behaves the way we want it to. [And] Through
validation we check to make sure that somewhere in the process a mistake hasn’t been made such
that the product build is not what the customer asked for.”

Black Box Testing

Black Box testing, also known as data-driven testing is an input/output testing methodology. In Black
Box testing the program is viewed as if it were a metaphorical ‘black box’. The person doing the
testing is unable to see inside the program or black box and therefore is unable to test any of the
code used in creating the program. The tester using a Black Box testing methodology is therefore
only able to test inputs and outputs exhaustively, to check all possible cases and see if the program
behaves as it is supposed to and gives correct outputs for all possible variations of input. One main
benefit of Black Box testing is that the program creator and the tester are independent of each other
therefore there is less chance of subconsciously avoiding and ignoring errors. Another benefit to
Black Box testing is that it is usually the customer that undertakes either directly or indirectly the
testing process and therefore it is with their needs in focus that the testing is undertaken.

However there are also disadvantages to Black Box testing. Black Box testing for even small
programs can include many, many permutations, even in the case of the Fly Eazy Payroll Program
where there are theoretically a huge number of permutations of grade, department, and hours
worked (assuming hours worked are uncapped). This amount of permutations means that Black Box
Testing can be a very time consuming and therefore expensive process. The danger of this is to cut
time and money on Black Box testing a smaller number of permutations can be chosen and used,
which by definition means that another amount of permutations go ignored and without testing
them it is unknown as to whether these permutations could cause errors.

White Box Testing

White Box Testing, conversely to Black Box testing, is a methodology where the program is seen as if
it were a metaphorical ‘white box’ or a box that can be seen into; hence it is also often referred to as
structural testing, clear box testing and Glass Box testing (Beizer, 1995).

White Box testing is also a verification and validation methodology, and adheres to the same IEEE

standards as Black Bow testing as detailed above. However with the nature of White Box testing, it
can be controlled and performed by the programmer and creator of the program to be tested.

CMP7032 — Systems Development Page 27 of 48 $12763849

White Box testing, as it is undertaken inside the program, has full view of all of the code and paths
taken within a program and can therefore be used to test more of how the program works, and not
merely the inputs and outputs. To this end if can sport potential errors which would otherwise be
missed with just Black Box testing alone. Albeit for full rigorous testing a combination of both Black
and White Box testing methodologies would be recommended.

White Box testing takes each single component of the program and runs tests on these to see if the
correct answer to the given test is achieved, to this end it can be simpler and less time consuming
that Black Box testing, albeit this is not always the case. This can however also lead to correcting
mistakes within the code lines easier to make as they can be made in situ. Whereas if these incorrect
results are noticed purely in Black Box testing then the program must return to the programmer to
correct mistakes (if it can be found) before passing it back to the tester to continue with Black Box
testing.

CMP7032 — Systems Development Page 28 of 48 $12763849

White Box Testing with Test Results

FlyEazy Payroll Program Testing

Using a ‘White Box’ testing approach and the debugger facility of Microsoft Visual Studio, various
breakpoints will be set and run on the FlyEazy Flytes Payroll Program to test and verify the correct
working of the program.

The testing process will include using different data sets to check both individual working of all
aspects of the program and testing with a complete set off correctly formatted data to test a final
output solution. It is impossible to test all potential permutations of data in the time allowed, as
discussed previously, so only a small, selected, random set of data will be used in this case.

Preliminary Test Data

| TestData - Notepal [:’ ISHEST J
File Edit Format View Help
0001Smith John SA 47 -
0002Gearing Lorraine ME 58
0003R1ichards Hudson SB 45
0004Gough Margaret oC 42
0005James Nick SD 51
0006Seaton Roy SB 48
0007Griffin Stephen OA 46
0008Gilliver Rachel SB 48
00093011y Phil ME 37
0010Jones John MA 42

| |

Figure 1: Set of ten employees all formatted correctly using capital letters where necessary.

In this preliminary test scenario a full list of ten employees with all correct data and formatting is
inputted to the program and an output obtained. The calculations in this data have all been tested
using the mathematical formulae required to produce answers for Gross Pay, Tax and Net Pay per
employee along with totals per department and for the company as a whole. These calculations
have been done dependant on grade, department and hours worked and it can be confirmed that
with these preliminary tests, the output produced was as desired and correct, as shown overleaf.

CMP7032 — Systems Development Page 29 of 48 512763849

Test Output for Preliminary Test
@ C:\Windows\system32\cmd.exe (== %
FlyEazy Flytes Payroll Report

Department: Marketing
Surname Forename Net Pay
Gearing Lorraine 121.75
Jolly Phil 148.52
Jones John 1141

Total for: Marketing £384.37

Department: Sales
Surname Forename Net
Smith John . . 119.
Richards Hudson . . 140.
James Nick . . 128.
Seaton Roy . . 137.
Gilliver Rachel

Total for: Sales

Department: Operations

ID Surname Forename
0004 Gough Margaret
0007 Griffin Stephen

Total for: Operations

Totals for whole company

Total Net Pay: £1311.19
Total Tax Payable: £149.01

Press any key to continue .

Figure 2: Full, successful test result for ten employees from full test data file.

CMP7032 — Systems Development Page 30 of 48 $12763849

Single Line Data Tests (White Box)

In this test, a breakpoint has been added at the public double calcNormalHours to test that the
program is accessing the if/else loop correctly. It can be seen from the output that this indeed is
happening as expected correctly when the grade in this case is A the program enters the loop at the
if statement for a grade A (or a) employee. When the breakpoint is stepped into and the debugging
continued throughout the program, it can also be seen that the program enters all subsequent loops
at the correct grade for this grade A employee.

As we move on with the test for this set of data (TestDatal) we can see that when the breakpoint
arrives at final output calculations for Gross and Net Pay, the debugger correctly changes the local
values stored on MS Visual Studio to the newly created local variables as shown in the associated

screen prints.

Finally the final outputs for Gross Pay, Tax Payable and Net Pay were tested to make sure that these
outputs where being called to the correct locations in the program, testing the if/else statements
and loops to do this. It can be seen again that these are working correctly and shown in the output
screen shots.

These same tests were carried out with further test data (see attached screen shots) to test a wide
range or permutations for different options of departments and grades, along with the effects of
lower case letters on the program.

An attached testing table, shows that all of these data sets passed the test conditions within the
program. However for brevity not all screen grabs are shown within this report and as previously
stated to test all potential permutations of test data will not be possible within the time and scope
allowed.

TestData 1

| TestDatal - Notepac

File Edit Format View Help

[0001Smith John SA 47 .

Figure 3: Single employee from the Sales department with codes in capital letters.

CMP7032 — Systems Development Page 31 of 48 512763849

Test Outputs for Test 1

=] --——————
// Method to return normal hours
L 2 .
= public double calcNormalHours ()
= if (grade == "A" || grade == "a")
{
return Math.Min (hoursWorked, 45);
}
else if (grade == "B" || grade == "b")
{
return Math.Min (hoursWorked, 45);
}
else if (grade == "C" || grade == "c")
{
< | I
Locals ~ I X|[call sta
|Name |Va|ue |Type S [Namn
@ this {FlyEazyRWFinal.Employee} FlyEazyt = FlyEaz
& deptCode "s" Q ~ string FlyEaz
& forename "John " Q ~ string FlyEaz
& grade "A" A ~ string FlyEaz
& hoursworked 47.0 double FlyEaz
& id "0001" X ~ string [Exter
& surname "Smith " Q ~ string

Figure 4: Testing If/Else Statement

1=l //————
// Method to return basic Pay
- S
=] public double calcBasicPay()
{
if (grade == "A" || grade == "a")
{
> treturn Math.Round (calcNormalHours () * 3.00, 2);
}
else if (grade == "B" || grade == "b")
{
return Math.Round(calcNormalHours() * 3.50, 2);
}
else if (grade == "C" || grade == "c")
{
return Math.Round(calcNormalHours() * 4.00, 2);
}
else if (grade == "D" || grade == "d")
{
< | i
_ocals ~ 31X ||
|Name ‘Value ‘Type & ‘
@ this {FlyEazyRWFinal.Employee} FlyEazyt
& deptCode "s" X ~ string
& forename "John " Q ~ string
& grade "A" X ~ string
& hoursWorked 47.0 double
& id "0001" X ~ string
& surname "Smith " Q ~ string

Figure 5: Testing Entry into correct If Statement

CMP7032 — Systems Development Page 32 of 48 $12763849

taxPayable =
// Write the

if (deptCode
{

}

grade = nextEmployee.returnGrade();

hoursWorked = nextEmployee.returnHoursWorked() ;
= grossPay = nextEmployee.calcGrossPay ()’

netPay = nextEmployee.calcNetPay()
nextEmployee.calcGrossTaxPayable () ;

outputs to screen

|| deptCode == "m")

// No return as not all code paths return a value
return Convert.ToString(0):;

Console.WriteLine (id + "\t" + surname + "\t" + forename + "\t" + grade + ™

=] /=== - - - - -
// Wages Method To calculate each individual's full wages breakdown for Sales
- Y P— R R R N ——
= public string showEmployeePaySales ()
< 1
Locals ~ 13X @
‘ Name ‘ Value |Type S U_r
@ this {FlyEazyRWFinal.Department} FlyEazyt > F
@ nextEmployee {FlyEazyRWFinal.Employee} FlyEazyf F
vi 0 int [
@ id "0001" Q v string
@ surname "Smith " Q ~ string
@ forename "John " Q ~ string
@ deptCode "s" X ~ string
@ grade "A" Q ~ string
@ hoursWorked 47.0 double
@ grossPay 0.0 double
@ taxPayable 0.0 double
@ netPay 0.0 double
Figure 6: Testing Gross Pay Call
CMP7032 — Systems Development Page 33 of 48 $12763849

deptCode = nextEmployee.returnDept ()

grade = nextEmployee.returnGrade():

hoursWorked = nextEmployee.returnHoursWorked():;
grossPay = nextEmployee.calcGrossPay();

= hetPay = nextEmployee.calcNetPay();

taxPayable = nextEmployee.calcGrossTaxPayable()

// Write the outputs to screen
if (deptCode == "M" || deptCode == "m")
{

Console.WriteLine(id + "\t" + surname + "\t" + forename + "\t" + grade + "\

}
// No return as not all code paths return a value
return Convert.ToString(0);

= //-—— N ,—”§;- e _— -
// Wages Method To calculate each individual's full wages breakdown for Sales

- / /- — R — R — —

ET] public string showEmployeePaySales ()
< | i
Locals ~ 3 x @
| Name |Value |Type & u N
@ this {FlyEazyRWFinal.Department} FlyEazyt = Fb
@ nextEmployee {FlyEazyRWFinal.Employee} FlyEazyt FI

vi 0 int [E

@vid "0001" Q ~ string

@ surname "Smith " Q ~ string

@ forename "John " Q ~ string

@ deptCode "s" @ ~ string

@ grade A" Q ~ string

@ hoursWorked 47.0 double

@ grossPay 132.8 double

@ taxPayable 0.0 double

@ netPay 0.0 double

Figure 7: Testing Correct Values in Call

CMP7032 — Systems Development Page 34 of 48 $12763849

// step through each employee
for (int i = 0; i < Employee.Count; i++)

{

Employee nextEmployee = (Employee)Employee([i];
id = nextEmployee.returnId():;

surname = nextEmployee.returnSurname () ;
forename = nextEmployee.returnForename () ;
deptCode = nextEmployee.returnDept():;

grade = nextEmployee.returnGrade();
hoursWorked = nextEmployee.returnHoursWorked() ;
grossPay = nextEmployee.calcGrossPay()

= betPay = nextEmployee.calcNetPay () ;
taxPayable = nextEmployee.calcGrossTaxPayable();
// Write the outputs to screen
if (deptCode == "M" || deptCode == "m")
{
Console.WriteLine (id + "\t" + surname + "\t" + forename + "\t" + grade + "\
}
}
// No return as not all code paths return a value
return Convert.ToString(0);
< | I
Locals ~ & xX||call
|Name]VaMe ‘Type a LJE
@ this {FlyEazyRWFinal.Department} FlyEazyt > F
nextEmployee {FlyEazyRWFinal.Employee} FlyEazyt F
vi 0 int [
@ id "0001" Q ~ string
@ surname "Smith " Q ~ string
@ forename "John " Q ~ string
@ deptCode s Q ~ string
@ grade "A" Q ~ string
@ hourswWorked 47.0 double
@ grossPay 132.8 double
@ taxPayable 0.0 double
@ netPay 0.0 double
Figure 8: Testing Correct Values in Call
CMP7032 — Systems Development Page 35 of 48 $12763849

// step through each employee

for (int i = 0; i < Employee.Count; i++)

{
Emplovee nextEmployee = (Employee)Employee[i];
id = nextEmployee.returnId();
surname = nextEmployee.returnSurname ();
forename = nextEmployee.returnForename () ;
deptCode = nextEmployee.returnDept():
grade = nextEmployee.returnGrade();
hoursWorked = nextEmployee.returnHoursWorked();
grossPay = nextEmployee.calcGrossPay();
netPay = nextEmployee.calcNetPay()

(=5 kaxPayable = nextEmployee.calcGrossTaxPayable () ;
// Write the outputs to screen
if (deptCode == "M" || deptCode == "m")
{
Console.WriteLine (id + "\t" + surname + "\t" + forename + "\t" + grade +
}
}
// No return as not all code paths return a value
return Convert.ToString(0):;
< | I
Locals ~ 3 x E
‘Name ‘VaMe |Type o
@ this {FlyEazyRWFinal.Department} FlyEazyt =
@ nextEmployee {FlyEazyRWFinal.Employee} FlyEazyt
vi 0 int
v id "0001" Q ~ string
@ surname "Smith " Q v string
v forename "John " 2~ string
@ deptCode "s" 2~ string
@ grade "A" X~ string
@ hoursWorked 47.0 double
@ grossPay 132.8 double
@ taxPayable 0.0 double
@ netPay 119.88 double

Figure 9: Testing Correct Values Out of Call

grade = nextEmployee.returnGrade();
hoursWorked = nextEmployee.returnHoursWorked() ;
grossPay = nextEmployee.calcGrossPay()
netPay = nextEmployee.calcNetPay():;
= kaxPayable = nextEmployee.calcGrossTaxPayable();
// Write the outputs to screen
if (deptCode == "M" || deptCode == "m")
{
Console.WriteLine (id + "\t" + surname + "\t" + forename + "\t" + grade + "\
}
}
// No return as not all code paths return a value
return Convert.ToString(0);
< | 1
Locals ~ @ x||call
| Name ‘Value |Type - UE
@ this {FlyEazyRWFinal.Department} FlyEazyt = Fh
nextEmployee {FlyEazyRWFinal.Employee} FlyEazyf Fh
@i 0 int [E
@ id "0001" Q v string
@ surname "Smith " Q ~ string
@ forename "John " Q ~ string
@ deptCode "s" R ~ string
@ grade "A" Q ~ string
@ hoursWorked 47.0 double
@ grossPay 132.8 double
@ taxPayable 0.0 double
@ netPay 119.88 double
Figure 10: Testing Correct Values Out of Call
CMP7032 — Systems Development Page 36 of 48 $12763849

Taxrayaple = nexXtmmployee.calcurossraxrayable();
// Write the outputs to screen
= Iif (deptCode == "M" || deptCode == "m")
{
Console.WriteLine (id + "\t" + surname + "\t" + forename + "\t" + grade + '
}
}
// No return as not all code paths return a value
return Convert.ToString(0);
<« | i
Locals ~ I x @
|Name ‘Value |Type = u
@ this {FlyEazyRWFinal.Department} FlyEazyt | =
@ nextEmployee {FlyEazyRWFinal.Employee} FlyEazyt
vi 0 int
@ id "0001" A ~ string
@ surname "Smith " Q v string
v forename "John " Q ~ string
@ deptCode "s" X ~ string
@ grade A" A ~ string
@ hoursWorked 47.0 double
@ grossPay 132.8 double
@ taxPayable 12.92 double
@ netPay 119.88 double
>

Figure 11: Testing Correct Values from Call

// find the department code value
deptCode = nextEmployee.returnDept():;
// add the next net pay item to the departmental total (for each matching varic
= li.f (deptCode == "M" || deptCode == "m")
{
marketingNetPay = marketingNetPay + nextEmployee.calcNetPay ()
}
}
// write the total net pay and tax payable for the department
Console.writeLine(ll\tll + ll\tll + ll\tll + ll\tll + ll\t" + "\t" + "\t" + "\t" + ll\tll + LAY
Console.WriteLine ("Total for: Marketing"™ + "\t" + "\t" + "\t" + "\t" + "\t" + "\t"
Console.WriteLine();
u }
< | 1
Locals ~ I x @
|Name |Value lType S UJ
@ this {FlyEazyRWFinal.Department} FlyEazyt > F
@ nextEmployee {FlyEazyRWFinal.Employee} FlyEazyt F
vi 0 int [
@ marketingNetPay 0.0 double
@ deptCode s" Q ~ string

Figure 12: Testing Correct Path to If/Else Statement

CMP7032 — Systems Development Page 37 of 48 $12763849

taxPayable = nextEmployee.calcGrossTaxPayable();

// Write the outputs to screen
=3 |if (deptCode == "S" || deptCode == "s")
{

Console.WriteLine (id + "\t" + surname + "\t" + forename + "\t" + grade + "

// No return as not all code paths return a value
return Convert.ToString(0);

- }
—/ i
< | I
Locals ~ & X||ce
‘ Name Value |Type - u
@ this {FlyEazyRWFinal.Department} FlyEazyt =
nextEmployee {FlyEazyRWFinal.Employee} FlyEazyt
& deptCode s Q v string
& forename "John " 2 ~ string
& grade "A" Q ~ string
& hoursWorked 47.0 double
& id "0001" 2~ string
& surname "Smith " Q ~ string
v 0 int
vid "0001" R ~ string
@ surname "Smith " X ~ string
@ forename "John " Q v string
@ deptCode "s" X~ string
@ grade "A" X ~ string
@ hoursWorked 47.0 double
@ grossPay 132.8 double
@ taxPayable 12.92 double
@ netPay 119.88 double

Figure 13: Testing Correct Decision into If/Else Statement

CMP7032 — Systems Development Page 38 of 48 $12763849

Test Table for all Data Sets

Gross Tax Net Grade Department
Data Set If/Else Loops . . . Totals
Pay Payable Pay Locations Location
TestDatal v v v 4 v v v v
TestData2 v v v v v v v
TestData3 v v v v v v v v
TestData4 4 v v v 4 v 4 4
TestData5 v v v v v v v v
TestData5 v v v 4 v v v v
Test Data 2
| TestData2 - Notepad IS
File Edit Format View Help
0007Griffin Stephen OA 46 -
Figure 14: Single employee from the Operations department with codes on capital letters.
Selected Test Outputs for Test Data 2
1
Employee nextEmployee = (Employee)Employee[i];
id = nextEmployee.returnId():;
surname = nextEmployee.returnSurname();
forename = nextEmployee.returnForename () ;
Q deptCode = nextEmployee.returnDept ()’
grade = nextEmployee.returnGrade ()’
hoursWorked = nextEmployee.returnHoursWorked() ;
grossPay = nextEmployee.calcGrossPay ()’
=) |netPay = nextEmployee.calcNetPay();
taxPayable = nextEmployee.calcGrossTaxPayable()
< | 1
Locals ~ ¥ x]|[can:
Name Value ‘Type & ‘4 Nz
@ this {FlyEazyRWFinal.Department} FlyEazyt = Fly
@ nextEmployee {FlyEazyRWFinal.Employee} FlyEazyt Fly
vi 0 int [Ex
@ id "0007" @ ~ string
@ surname "Griffin " X ~ string
@ forename "Stephen " X ~ string
@ deptCode "o" X ~ string
@ grade "A" Q ~ string
@ hoursworked 46.0 double
@ grossPay 133.9 double
@ taxPayable 0.0 double
@ netPay 0.0 double
Figure 15: Testing Correct Values Out of Call
CMP7032 — Systems Development Page 39 of 48 $12763849

[L [[~ e e e e e e e
// Method to return normal hours
L 2
= public double calcNormalHours ()
o
= if (grade == "A" || grade == "a")
{
return Math.Min (hoursWorked, 45);
}
else if (grade == "B" || grade == "b")
{
vt Mot MAn (v aliTAawvlra A AT\ -
| 11l

Call Sti
U Name Value Type =+ J Nan
{FlyEazyRWFinal.Employee} = FlyEa
& deptCode "o" 2 ~ string FlyEa
& forename "Stephen " X ~ string FlyEa
& grade A" 2~ string FlyEa
& hourswWorked 46.0 double FlyEa
@ id "0007" Q ~ string [Exte
& surname "Griffin " Q ~ string

Figure 16: Testing Correct Entrance into If/Else Statement

grossPay = nextEmployee.calcGrossPay();
netPay = nextEmployee.calcNetPay():
@ |taxPayable = nextEmployee.calcGrossTaxPayable () ;|

// Write the outputs to screen

if (deptCode == "M" || deptCode == "m")
{
Console.WriteLine (id + "\t" + surname + "\t" + forename + "\t" + grade + "\t
}
}
<| 1
Locals ~ & Xx||call¢
[Name |Va|ue ‘Type o UE
@ this {FlyEazyRWFinal.Department} FlyEazyt | © Flyl
@ nextEmployee {FlyEazyRWFinal.Employee} FlyEazyt Flyl
@i 0 int [Ex
@ id "0007" Q ~ string
@ surname "Griffin " Q ~ string
@ forename "Stephen " R ~ string
¢ deptCode "o" 2 ~ string
¢ grade "A" 2 ~ string
@ hoursWorked 46.0 double
@ grossPay 133.9 double
¥ taxPayable 0.0 double
@ netPay 120.82 double
Figure 17: Testing Correct Values out of Call
Test Data 3
[0002Gearing Lorraine ME 58 -
Figure 18: Single employee from the Marketing department with codes in capital letters.
CMP7032 — Systems Development Page 40 of 48 $12763849

Selected Test Outputs for Test Data 3
i

else if (grade == "E" || grade == "e")
{
= heturn Math.Min (hoursWorked, 37);
}
else
{
return 0;
}
«| . i
Locals ~ @ x||cal
‘Name Value |Type - u N
@ this {FlyEazyRWFinal.Employee} FlyEazyf = Fl
& deptCode ™" Q ~ string Fl
& forename "Lorraine " X ~ string FI
& grade "E" Q ~ string Fl
& hoursWorked 58.0 double Fl
& id "0002" X ~ string [E
& surname "Gearin, " Q ~ strin
g g

Figure 19: Testing Correct Entrance to If/Else Statement

hoursWorked = nextEmployee.returnHoursWorked();
grossPay = nextEmployee.calcGrossPay();

1_1)
// Write the outputs to screen
if (deptCode == "M" || deptCode == "m")
{

Console.WriteLine (id + "\t" + surname + "\t" + forename + "\t" + grade + "\t

}

// No return as not all code paths return a value

< | 1

Locals ~ & x| calls

| Name Value]Type & u Nz
@ this {FlyEazyRWFinal.Department} FlyEazyt = Flyl
@ nextEmployee {FlyEazyRWFinal.Employee} FlyEazyt Flyl

i 0 int [Ex

@id "0002" Q ~ string

@ surname "Gearing " R ~ string

@ forename "Lorraine " R~ string

@ deptCode ™" Q ~ string

@ grade "E" Q ~ string

@ hourswWorked 58.0 double

@ grossPay 135.0 double

@ taxPayable 0.0 double

@ netPay 0.0 double

Figure 20: Testing Correct Values Out of Call

CMP7032 — Systems Development Page 41 of 48 $12763849

netPay = nextEmployee.calcNetPay();
=) |taxPayable = nextEmployee.calcGrossTaxPayable () ;

// Write the outputs to screen
if (deptCode == "M" || deptCode == "m")
{

Console.WriteLine (id + "\t" + surname + "\t" + forename + "\t" + grade + "\t" +

}

// No return as not all code paths return a value

«| I

Locals ~ I X ||Call Stack
[Name Value |Type a ‘ Name
@ this {FlyEazyRWFinal.Department} FlyEazyt @ FlyEazyRW
@ nextEmployee {FlyEazyRWFinal.Employee} FlyEazyt FlyEazyRV
@i 0 int [External (
@ id "0002" R ~ string
@ surname "Gearing " X ~ string
@ forename "Lorraine " X ~ string
@ deptCode ™" Q ~ string
@ grade "E" Q ~ string
@ hourswWorked 58.0 double
@ grossPay 135.0 double
@ taxPayable 0.0 double
@ netPay 121.75 double

Figure 21: Testing Correct Values Out of Call

CMP7032 — Systems Development Page 42 of 48 $12763849

Test Data 4

File Edit Format View Help

0001Smith John sa 45 -

Figure 22: Single employee from the Sales department with codes in lower case.

Selected Test Outputs for Test Data 4

grade = nextEmployee.returnGrade()

hoursWorked = nextEmployee.returnHoursWorked() ;
grossPay = nextEmployee.calcGrossPay()

= netPay = nextEmployee.calcNetPay()

0 taxPayable = nextEmployee.calcGrossTaxPayable () ;

// Write the outputs to screen
if (deptCode == "M" || deptCode == "m")
{

Console.WriteLine (id + "\t" + surname + "\t" + forename + "\t" + grade + "\t" + h¢

}

// No return as not all code paths return a value

< |]

Locals ~ 1 X ||Call Stack
‘ Name Value ‘Type S ‘ Name
@ this {FlyEazyRWFinal.Department} FlyEazyf = FlyEazyRWFi
nextEmployee {FlyEazyRWFinal.Employee} FlyEazyt FlyEazyRWFit
vi 0 int [External Coc
@ id "0001" Q ~ string
@ surname "Smith " Q ~ string
@ forename "John " Q ~ string
@ deptCode "s" X ~ string
@ grade "a" X ~ string
@ hoursWorked 45.0 double
@ grossPay 135.0 double
¥ taxPayable 0.0 double
@ netPay 0.0 double

Figure 23: Testing Correct Values Out of Call

grossPay = nextEmployee.calcGrossPay()
netPay = nextEmployee.calcNetPay():
ﬁ) ItaxPayable = nextEmployee.calcGrossTaxPayable () ;

// Write the outputs to screen
if (deptCode == "M" || deptCode == "m")
{

Console.WriteLine (id + "\t" + surname + "\t" + forename + "\t" + grade + "\t" A

}

// No return as not all code paths return a value

< | 1

Locals ~ I X | Call Stack
’ Name Value ’Type & ‘ Name
@ this {FlyEazyRWFinal.Department} FlyEazyt Q© FlyEazyF
¥ nextEmployee {FlyEazyRWFinal.Employee} FlyEazyt FlyEazyf

vi 0 int [Externe

@ id "0001" Q ~ string

@ surname "Smith " Q ~ string

@ forename "John " R ~ string

@ deptCode "s" X ~ string

¥ grade "a" X ~ string

@ hoursWorked 45.0 double

@ grossPay 135.0 double

¥ taxPayable 0.0 double

@ netPay 121.75 double

Figure 24: Testing Correct Values Out of Call

CMP7032 — Systems Development

Page 43 of 48

512763849

Test Data 5

File Edit Format View Help

[0002Gearing Lorraine

me 58

Figure 25: Single employee from the Marketing department with codes in lower case.

Selected Test Outputs for Test Data 5

“#$FlyEazyRWFinal Department
] (

Employee nextEmployee = (Employee)Employee[il;
id = nextEmployee.returnId():

surname = nextEmployee.returnSurname () ;
forename = nextEmployee.returnForename () ;
deptCode = nextEmployee.returnDept () ;

grade = nextEmployee.returnGrade () ;

hoursWorked = nextEmployee.returnHoursWorked () ;
grossPay = nextEmployee.calcGrossPay () ;

“ showEmployeePayMarketing()

=3 netPay = nextEmployee.calcNetPay();
taxPayable = nextEmployee.calcGrossTaxPayable () ;
// Write the outputs to screen
if (deptCode == "M" || deptCode == "m")
{
Console.WriteLine (id + "\t" + surname + "\t" + forename + "\t" + grade + "\t" + hoursWorked + "\t" + grossPay + "\t" + taxPayable + "\t" + netPay):
}
}
// No return as not all code paths return a value
return Convert.ToString(0):
< il]
Locals ~ ¥ X|[Call Stack
| Name Value | Type ~ || | Name | Language
[@ this {FlyEazyRWFinal.Department} FlyEazyRWFinal.Department 5 FlyEazy |.exelFlyEazy y g() Line 106 c#
[+ @ nextEmployee {FlyEazyRWFinal.Employee} FlyEazyRWFinal.Employee lyEazy X y P Main(string[] args = {string[0]}) Line 27 + Oxa bytes [
vi 0 [External Code]
vid "0002"
@ surname “Gearing =
@ forename "Lorraine L
@ deptCode m"
@ grade e
@ hoursworked 58.0
@ grossPay 135.0
@ taxPayable 0.0
@ netPay 0.0 double
Figure 26: Testing Correct Values Out of Call
 Departmentcs Employee.cs :’ngram.m
]%FlyEazyRWFinaLEmployee v “calcBasicPay()
}
else if (grade == "B" || grade == "b")
{
return Math.Round (calcNormalHours() * 3.50, 2);
}
else if (grade == "C" || grade == "c")
return Math.Round(calcNormalHours() * 4.00, 2);
}
else if (grade == "D" || grade == "d")
return Math.Round(calcNormalHours() * 4.00, 2);
}
else if (grade == "E" || grade == "e")
{
=3 return Math.Round(calcNormalHours() * 4.50, 2);
}
else
{
return 0;
<] il]
Locals ~ I X||[Call Stack
|| Name Value | Type + || |Name | Language
E @ this {FlyEazyRWFinal.Employee} FlyEazyRWFinal.Employee - FlyEazyl IFlyEazy . Employee. y() Line 188 I3
deptCode m" Q' string yEazy IFlyEazy . Employee. y() Line 234 + 0x8 bytes c#
forename "Lorraine 3 Q v string yEazyl IFlyEazyl . Employee.calcNetPay() Line 307 + 0x8 bytes c#
grade "e" Q + string yEazy! 1FlyEazyRWFinal.Departr ing() Line 106 + Oxa bytes [
hoursWorked 58.0 double FlyEazyRWFinal.exe!FlyEazyRWFinal.Program.Main(string[] args = {string[0]}) Line 27 + Oxa bytes c#
»id "0002" Q v string [External Code]
surname "Gearing 2 Q + string
Figure 27: Testing Correct Entrance into If/Else Statement
CMP7032 — Systems Development Page 44 of 48 $12763849

“$FlyEazyRWFinal.Employee

M }

else if (grade =
{

|| grade == "b")
return Math.Round (calcNormalHours ()

}

else if (grade

{

c" |1 grade)
return Math.Round (calcNormalHours ()
}

else if (grade == "D" || grade =

ngm)

return Math.Round (calcNormalHours ()
}

else if (grade == "E" || grade == "e")
{

return Math.Round (calcNormalHours ()
}
else
{

return 0;

~ “calcBasicPay()

3.50,

4.00,

2);

4.00,

4.50,

<

i

|| Name | value Type ~|| |Name | Language
@ this {FlyEazyRWFinal.Employee} FlyEazyRWFinal.Employee = FlyEazy X lyEazy! Employee. y() Line 182 c#
deptCode "m" Q + string yEazy! 4 lyEazy! . Employee. () Line 234 + 0x8 bytes c#
& forename "Lorraine = Q ~ string FlyEazyRWFinal.exe!FlyEazyRWFinal.Employee.calcNetPay() Line 307 + 0x8 bytes <3
& grade "e" Q - string lyEazyl l.exe!FlyEazy Department. () Line 106 + 0xa bytes cz
& hoursWorked 58.0 double FlyEazyRWFinal.exe!FlyEazyRWFinal.Program.Main(string[] args = {string[0]}) Line 27 + 0xa bytes c#
»id "0002" QA ~ string [External Code]
surname "Gearing " Q + string
Figure 28: Testing Correct Entrance to If/Else Statement
CMP7032 — Systems Development Page 45 of 48 $12763849

Test Data 6

File | Edit Format View Help

Ip007Gr'1'fﬁ'n Stephen oa 46 - I

Figure 29: Single employee from the Operations department with codes in lower case.

Selected Test Outputs for Test Data 6

grossPay = nextEmployee.calcGrossPay():

netPay = nextEmployee.calcNetPay ()’

=] ItaxPayable = nextEmployee.calcGrossTaxPayable();

// Write the outputs to screen
if (deptCode == "M" || deptCode == "m")
{
Console.WriteLine (id + "\t" + surname + "\t" + forename + "\t" + grade + "\t"
}
}
// No return as not all code paths return a value
return Convert.ToString(0);

=] /)= ————————————
// Wages Method To calculate each individual's full wages breakdown for Sales

- 2
= — m— m— i
Locals ~ & X ||Call Ste
‘ Name Value ‘Type & ‘ Nam
@ this {FlyEazyRWFinal.Department} FlyEazyt Q FlyEa
@ nextEmployee {FlyEazyRWFinal.Employee} FlyEazyf FlyEa

vi 0 int [Extel

v id "0007" 2~ string

@ surname "Griffin " R~ string

@ forename "Stephen " Q ~ string

@ deptCode "o" R~ string

@ grade "a" R ~ string

@ hoursWorked 46.0 double

@ grossPay 133.9 double

¥ taxPayable 0.0 double

@ netPay 120.82 double

Figure 30: Testing Correct Values Out of Call

CMP7032 — Systems Development Page 46 of 48 $12763849

grossPay = nextEmployee.calcGrossPay();
netPay = nextEmployee.calcNetPay():;

0 taxPayable = nextEmployee.calcGrossTaxPayable () ;

// Write the outputs to screen
= lif (deptCode == "M" || deptCode == "m")
{

Console.WriteLine(id + "\t" + surname + "\t" + forename + "\t" + grade + "\t" + h

}
// No return as not all code paths return a value
return Convert.ToString(0):;

F }
= //
// Wages Method To calculate each individual's full wages breakdown for Sales
: /7
m — - — — i
Locals ~ I X | Call Stack
‘ Name ‘Value ‘Type & ‘ Name
@ this {FlyEazyRWFinal.Department} FlyEazyt = FlyEazyRWF
@ nextEmployee {FlyEazyRWFinal.Employee} FlyEazyt FlyEazyRWF
vi 0 int [External Co
vid "0007" Q ~ string
@ surname "Griffin " X ~ string
@ forename "Stephen " 2 ~ string
@ deptCode "o" Q ~ string
@ grade "a" Q ~ string
@ hoursWorked 46.0 double
@ grossPay 133.9 double
¢ taxPayable 13.08 double
@ netPay 120.82 double

Figure 31: Testing Correct Value Out of Call

CMP7032 — Systems Development Page 47 of 48 $12763849

Bibliography
Beizer, B. 1995. Black Box Testing. New York: John Wiley and Sons

Boehm, B.W., 1981. Software Engineering Economics. New Jersey: Prentice-Hall.

Farlex, 2012. The Free Dictionary. [Online] Available at: "http://www.thefreedictionary.com/Array"
[Accessed 21 December 2012].

IEEE. 2011. "ANSI/IEEE Standard 1008-1987, IEEE Standard for Software Unit Testing," no., 1986.

McMillan, M., 2007. Data Structures and Algorithms Using C#. Cambridge: Cambridge University
Press.

Miller, R., 2008. C# For Artists. Pulp Free Press.

Miller, R., 2012. C# Collections: A Detailed Presentation. Pulp Free Press.

Webopedia. 2012. Black Box Testing [Online] Available at:
http://www.webopedia.com/TERM/B/Black_Box_Testing.html [Accessed, 21 December 2012]

Webopedia. 2012. White Box Testing [Online] Available at:
http://www.webopedia.com/TERM/W/White Box_Testing.html| [Accessed, 21 December 2012]

CMP7032 — Systems Development Page 48 of 48 $12763849

